
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4374 311

Impact of Hybrid Kernel for the Performance of

the Operating System

Miss Hema K Reddy
1
, Dr. M A Pund

2

ME Student, CSE , Prof. Ram Meghe Institute of Technology Research, Badnera1

Professor, CSE, Prof. Ram Meghe Institute of Technology & Research, Badnera2

Abstract: Embedded system application is a hot topic in today’s date & Linux gradually becomes the most important

operating system for embedded applications. Embedded real-time system must be able to response and deal with

system events within the pre-defined time limitation. In real-time multi-tasking system, a lot of events and multiple

concurrent tasks are running at the same time. Therefore, to meet the system response time requirement, we must

ensure that each mission can be achieved within the required time frame.

Current Operating Systems includes a graphical user interface that is widely used. Due to the absence of Real-Time

ability, current Operating Systems has not been suitable for all industrial applications. On the other hand normal

operating system has the advantage of having both widespread applications and broad user acceptance. Moreover lot
many low priced user programs are available. This is an attempt to create a way to make operating system useful for

industrial real-time applications eliminating its disadvantages without giving up its advantages of popular user

applications.

Keywords: Operating System Kernel, Hybrid Kernel, Performance arguments.

I. INTRODUCTION
The Hybrid Kernel combines the Desktop OS and RTOS

so that they can run concurrently on the same PC and the

user can get best of both worlds. To make this possible we

have developed a software only, real-time extension

technology for desktop OS. The new technology

guarantees deterministic response on interrupts that are

targeted at Desktop OS. Any PCI or ISA PC plug-in board

controlled by RTOS can generate these interrupts and

interrupts aimed at RTOS always receive a higher priority

than those aimed at Desktop OS [1].

 As long as at least one RTOS task is active, the

processors execution time is available exclusively for
RTOS. Desktop OS will be reactivated only if all the

RTOS tasks have given up their execution time and RTOS

has entered into the idle mode. The RTOS idle mode

controls the reactivation of General purpose OS. This

makes it possible for the programmer to control processor

sharing between two operating systems according to the

application requirements.

Contra posing the basic principles and mechanism of the

real-time operating system, the paper has compared

general operating systems with real-time operating system,

and made a good effort to analyze the key factors which
may affect the real-time characteristics of operating

system, and then given a assessment methods to evaluate

the real-time character of operating system.

Real-time systems are specific application systems in

general, because specific characteristics could ensure their

real-time characters on a certain extent. Early real-time

systems have no operating system supported. To

implement multi-task management, engineers must

program code for specific practical application. Therefore,

these particular software developments are less inheritance

for code reuse, maintenance and upgrades which brought a

lot of trouble. The emergence of real-time embedded

operating system provides a powerful tool for real-time

systems design and development because of its real-time

kernel, multi-task, scheduling and fast interrupt response

mechanism and so on. Such real-time characteristics can

significantly reduce the workload of developers, improve

development efficiency, and bring a lot of convenience for

the maintenance and upgrading systems.

However, a system that uses real-time operating is not

necessarily a real-time system. Real-time operating system

is just only provide a basis for the real-time system, and the

most essential elements for a real-time system are to meet

the system requirements of task-critical time, which means
the system must response to events in time and complete

tasks within the limited time[2].

REAL TIME OPERATING SYSTEM: ITS COMPONENTS AND

CHARACTERISTICS
Real-time operating system is a subtype of operating

system. It has a lot of characteristics which are similar to

common operating system in many respects. It is mainly

responsible for the control and management of variety of

hardware resources to enable the hardware system to

become available, and provides upper level applications

with rich system calls. It schedules execution in a timely

manner, manages system resources and provides a

consistent foundation for developing application code [3].

Components of RTOS

Most of the RTOS kernels consist of following

components:

 Scheduler - The scheduler is at the heart of every

kernel. A scheduler provides the algorithms needed to

determine which task executes when.

 Objects- The most common RTOS kernel objects
are tasks, semaphores and message queues.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4374 312

 Services- Most kernels provide services that help

developers create applications for real time embedded

systems. These services comprise sets of API calls that can

be used to perform operations on kernel objects or can be

used in general to facilitate following services:

o Timer Management

o Interrupt Handling

o Device I/O

o Memory Management

Embedded systems are used for various applications.

These applications can be proactive or reactive dependent

on the requirements like interface, scalability, connectivity
etc. Choosing the OS for an embedded system is based on

the analysis of OS itself and the requirements of

application.

Characteristics

1. Its real time characteristic-Response to events in

time and complete tasks within the limited time

1. The scheduling objective is letting high priority

task go first

2. The tasks running on real-time operating system

should be certain

3. Some data are highly sharing in real-time
operating system

FACTORS AFFECTING REAL-TIME CHARACTERISTICS OF

OPERATING SYSTEM

There are varieties of factors impacting a system’s real-

time. Among these factors, operating system and its own

factors play crucial roles, including process management,

task scheduling, context switching time, memory

management mechanism, the time of interrupt handle, and

so on.

Scheduling of tasks

It is crucial for the real-time operating system to adopt

preemptive scheduling kernel, which is based on task

priority. The uC/OS-II operating system uses this method

to implement its scheduling. In an operating system with

nonpreemptive scheduling mechanism, must have no strict

real-time characteristic.

Preemptive scheduling provides a good foundation for
real-time system. In order to maximize the efficiency of

scheduling systems, the operating system should run with

certain real-time scheduling algorithm.

There are some common real-time scheduling algorithms,

such as the Liu and Layland Rate-Monotonic (RM)

scheduling algorithm and the earliest deadline priority

(EDF) algorithm. The RM scheduling algorithm is a type

of static scheduling algorithm, in which the priority of

tasks are determined by the length of the cycle of task, and

the shorter cycle of task has a higher priority. The EDF

algorithm is one of the most popular dynamic priority

scheduling algorithms that define priority of tasks
according to their deadlines. Clearly, an excellent task

scheduling algorithm can improve the operating system’s

real-time characteristic. However, it also consumes a

certain degree of system resource. Thus, time complexity

of scheduling algorithm, in turn, has an impact on the real-

time characteristic.

The context switching time

In a multi-tasking system, context switch refers to a series

operation that the right of using CPU transferring from one

task which is running to another ready for running one [4].

In preemptive scheduling systems, there are a lot of events

that can cause context switches, such as external interrupt,
or releasing of resource which high priority tasks wait for.

The linkages of tasks in an operating system are achieved

by the process control block (PCB) data structure. When

context switches occurred, the former tasks information

was saved to the corresponding PCB or stack PCB

specified. The new task fetches original information from

corresponding PCB. The time switching consumed

depends on the processor architecture, because different

processors need to preserve and restore different number

of registers; some processors have a single special

instruction which is able to achieve all the registers’
preserve and restore job; some processors provide a

number of registers group, the context switching required

only need to change the register group pointer [5].

Operating system data structures will also affect the

efficiency of context switch.

The time of kernel prohibiting interrupt

To ensure the atomic of operating to some critical

resource, the operating system kernel has to prohibit all of

interrupt sometimes. Interrupt will break the sequence of

instructions, and may cause damage of data. Prohibiting

interrupt always delay the response of request and context

switching. In order to improve real-time performance of

operating system, noncritical operations can be inserted

between the critical areas. Setting reasonable preemptive

points in critical areas can reduce the prohibition time of

interrupt.

Efficiency and treatment methods of interrupt

As the driving force for operating system scheduling,

interrupt provides approaches of interaction between

external events and operating system. The interrupt

response speed is one of the most important ingredients

which impact the real-time performance of system. At the

end of each instruction execution, CPU will detect the
status of interrupt. If there is an interrupt request and the

interrupt is not prohibited, the system will execute a series

of interrupt treatments: pushing values of CPU registers to

stacks, obtaining the interrupt vector and getting the

procedures counter register value, then jumping to the

entrance of ISR and beginning to run, etc. [6]. What have

mentioned above requires some system consumption. For

a specific system, the consumption is identifiable, that is to

say: it is possible to calculate the time delay of interrupt

treatment caused by this part of work.

As interrupt management strategy, allowing interrupt

nesting can further improve the response of high-priority
incident’s real-time, but relatively low-priority interrupt

handling will be suffer negative impact. It should be

considered under certain situation.

Non-emergency interruption may cause delay to important

and urgent tasks, because interrupt handling is executed

before task and thread. In order to reduce the delay, the

handle process should be divided into two parts, just like

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4374 313

Linux divided it into the top half and bottom half. Also

Windows CE’s interrupt handling is divided into two

parts: ISR and IST. They tried to keep ISR as a short

program, while allowing tasks do more work, and make

full use of the task scheduling mechanism.

Memory management mechanism

Generally, a real-time operating system uses the most

efficient unified physical address space. Every task runs in

the same address space. This management method can

avoid the address space switching caused by the process

scheduling that will occupy a lot of system resources.

Because converting virtual address to physical address will

lower the system performance, real-time operating systems

use physical address directly, although it may bring

security and stability problems. One of the most popular

embedded operating systems-Vxworks uses the

mechanism.
Real-time operating systems never use virtual memory,

because it is hard to estimate the time of fetching data

from external storage medium. When a page miss occurs,

memory management should swap pages between internal

memory and external memory. This process will suspend

current running task. So the execution of real-time task

cannot be assured.

The race condition among tasks

The tasks of the system may compete for sharing resources.

It will definitely cause some tasks to suspend and wait for

the sharing resource. In preemptive scheduling kernel,

priority inversion is a serious problem caused by race

condition. A low-priority task which occupies critical

resources has no right to implement, while a high-priority

task has to wait a middle-priority task to release CPU to

low-priority task. So the high-priority task is affected

seriously and the task scheduling will become unstable and

unpredictable. The real-time performance of system
deteriorates rapidly. After all, the high-priority task can

only seize the CPU from the low-priority task. It can’t seize

the resources. At this condition, it is necessary to use

priority inheritance and priority ceiling to resolve the

problem.

ANALYSIS OF LINUX KERNEL’S REAL TIME

PERFORMANCE AND HOW IT IS RESTRICTED

It’s well known that an operating system’s real-time

performance is evaluated by the following five technologic

parameters: Deterministic, Preemptive, Context Switching,

Interrupt Latency and Scheduling Latency [7, 8]. Context
Switching is relative with specific CPU and Deterministic

is determined by the remaining three aspects. So in this

paper Linux kernel’s real-time performance is discussed

from Preemptive, Interrupt Latency and Scheduling

Latency.

Preemptive

In general there are two modes in Linux kernel which are

user state and core state. When a process operates at user

state, preemptive scheduling is possible to happen if there

is no shared data. But at core state the kernel is non-

preemptive [4] and the tasks ready to run must be done in
sequence. When a critical section of code is executed or

Preempt disable command is used, the task cannot be

preempted. In a word Linux kernel’s preemptive

performance still doesn’t meet the need of hard real-time

performance.

Scheduling Policy

Scheduling latency is the time that it takes for a high

priority task ready to run caused by an event to wait to be

done and is determined by interrupt latency, non-

preemptive time and scheduling algorithm. In general

Linux kernel scheduling algorithm is an O (n) algorithm

indicating scheduling time is relative with the task scale,

which is caused by concentrated computing time slices.
Scheduling time is certain independent of task scale

because Active queue and Expired queue are set so that it

is unnecessary to compute time slices concentrated and

scan the whole queue before scheduling switch. Thus

easily resulting in that non-real-time task blocks real-time

one by disabling interrupt.

Interrupt Latency

An interrupt has the highest priority and can preempt any

task. It is common to disable interrupt for safety in Linux

kernel process. If lower priority tasks disable interrupt

there will be uncertain latency time for real-time task’s

response, which is not allowed for real-time system.

Improvement on Linux Kernel Real-Time performance

It takes long time for Linux kernel to develop and its

performance to increase. However for the standard Linux

kernel its real-time performance is always a problem

unable to be solved completely. It is not because the
designers are not excellent for many top programmers and

engineers in the world take part in developing Linux

kernel, but the standard Linux kernel needs to take into

account fairness, balance and scale compatibility, and

many other factors so that real-time performance has to

give in. The real-time performance of Linux kernel is

improved by improving both scheduling strategy and

interrupt latency which block real-time task.

The hybrid Kernel gives the flexibility to select the system

according to the application. The choices are as follows:

A. Desktop Operating System

B. Embedded Operating System

C. Embedded Operating System with Soft Real time

requirements

D. Embedded Operating System with hard real time

requirements

The Input given by the Application Program interface will

be submitted to the kernel. Microkernel layer takes

control, which are special for Interrupt Handler

mechanisms and Specific schedulers.

Micro Kernel deals with real time tasks and gives them

main priority. Monolithic Kernel Deals with non real time

applications and tasks. However the intermediate layer of

Micro kernel deals with the applications, but the non real

applications will be scheduled by the monolithic kernel.

Thus the advantages of both the kernels will be achieved

and make the system General purpose System.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4374 314

CONCLUSION

The Flexibility to Use the Desktop OS and RTOS

simultaneously for the flexibility and portability can be

attained by the implementation of Hybrid kernel. At the

same time the Power of Both the Os can be achieved for

the Specific Applications, and we can build the application
custom so that more options are available to the User.

Because of hybrid kernel the dead line of the task can be

accomplished very easily.

REFERENCES

[1] YuZhaoAn, “Research of Real-Time Performance and Software

Reliability based on Embedded Industrial Control System with

Windows CE”, Master’s dissertation of Northwest University,2009.

[2] Chen Han Fei, “Research of Key Problem about Real-Time

Operating System”, Doctor’s Dissertation of Zhejiang

University,2009.

[3] Q. Li and C. Yao, “Real-Time Concepts for Embedded Systems”.

CMP Books, 2003.

[4] Tangyin, “Real-Time Operating System Application development

Guide”，China Electric Power Press, July 2002.

[5] Milan Milenkovic “OPERATING SYSTEMS: Concepts and

Design” (Second Edition), Tata McGraw-Hill Publishing Company

Limited,22
nd

 Reprint 2007. Pp-403.

[6] S. Andrew, Tanenbaum, S. Albert and Woodhull, “Operating Systems

Design and Implementation” （Third Edition）, Prentice Hall,

January 04, 2006.

[7] L.I. Bing and L.I. Zhong-wen, “Analysis of Linux Real-time

Mechanism”, Computer Technology and Development, vol. 17(09),

Sep. 2007, pp. 41-44.

[8] B. J. Wang, M. S. Li and Z. G. Wang , “Uniprocessor static priority

scheduling with limited priority levels”, Journal of Software, vol.

17(03), March 2006, pp. 602-610.

	INTRODUCTION
	Real Time Operating System: its Components and Characteristics
	Components of RTOS
	Characteristics

	Factors affecting Real-Time Characteristics of Operating System
	Scheduling of tasks
	The context switching time
	The time of kernel prohibiting interrupt
	Efficiency and treatment methods of interrupt
	Memory management mechanism
	The race condition among tasks

	Analysis of Linux Kernel’s Real Time Performance and How it is restricted
	Preemptive
	Scheduling Policy
	Interrupt Latency

